Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivan Garcia-Orozco, ${ }^{\text {a }}$ Cesar J. Pastor, ${ }^{\text {b }}$ Beatriz Souto, ${ }^{\text {b }}$ Esther Delgado, ${ }^{\text {c }}$ Elisa Hernández ${ }^{\mathrm{c}}$ and Cecilio Alvarez-Toledano ${ }^{\text {a }}$
${ }^{\text {a }}$ Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510,
México, DF, Mexico, ${ }^{\mathbf{b}}$ Servicio Interdepartamental de Investigacion (SIdI), Facultad de Ciencias Módulo C-IX, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and ${ }^{\text {c Depar- }}$ Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Correspondence e-mail: cesar.pastor@uam.es

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.028$
$w R$ factor $=0.067$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Nonacarbonyl- $\mu_{3}-N, N$-diethyldithiocarbamato$\kappa^{3} S: S: S^{\prime}-\mu$-hydrido-triosmium($3 \mathrm{Os}-\mathrm{Os}$)

The molecular structure of the title compound, $\left[\mathrm{Os}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right) \mathrm{H}(\mathrm{CO})_{9}\right]$, consists of an Os_{3} triangle with a bridging dithiocarbamate ligand acting as a five-electron donor; a hydride ligand is located between two Os atoms. Three terminal carbonyl groups on each Os atom complete the structure. There are two independent molecules in the asymmetric unit.

Comment

Arce et al. (1985) have reported the synthesis and spectroscopic characterization of the osmiun cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left\{\mu^{3}, \eta^{2}\right.\right.$ $\left.\left.(S, S)-\mathrm{S}_{2} \mathrm{CNEt}_{2}\right\}(\mathrm{CO})_{9}\right]$. We describe here the crystal structure of this compound, (I) (Fig. 1).

(I)

The molecular structure is based on a triangle of three Os atoms; there are two short and one long Os-Os bonds. The Os atoms are bridged by a μ_{2}-hydride and a μ_{3}-dithiocarbamate ligand. The $\mathrm{Os}-\mathrm{Os}$ distances are similar to distances reported in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mathrm{CCSiMe}_{3}\right)(\mathrm{CO})_{9}\right][2.833(1)$, 2.846 (1) and 2.843 (1) Å; Lewis et al., 1992] and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\right.$ $\left.\eta^{2}-\mathrm{C}_{12} \mathrm{H}_{7}\right)(\mathrm{CO})_{10}$] [2.8349 (2), 2.8768 (2) and 2.8799 (3) \AA; Adams et al., 2003]. The μ^{3}, η^{2}-dithiocarbamate ligand behaves as a five-electron donor through the S atoms. The $\mathrm{Os}-\mathrm{S}$ distances compare well with those found in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\{\mu\right.$ $\left.\left.\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CO}\right\}(\mathrm{CO})_{10}\right] \quad[2.419(5) \quad$ and 2.423 (4) A; Adams \& Perrin, 2000] and related complexes containing bridging sulfur-osmium linkages, e.g. $\left[\mathrm{Os}_{3}(\mu-\right.$ $\left.\mathrm{H})\left\{\mu, \eta^{2}-\mathrm{SC}=\mathrm{NCH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)\right\}(\mathrm{CO})_{10}\right][2.415$ (3) \AA; Azam et al., 2002] and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\eta-\mathrm{SC}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)(\mathrm{CO})_{10}\right]$ [2.416 (11) and 2.419 (8) \AA; Brodie et al., 1986]. The $\mathrm{C}-\mathrm{S}$ distances are also comparable to values reported for transition metal dithiocarbamates (Goh et al., 2001; Lu et al., 2004; Heard et al., 2000). The $\mathrm{C}-\mathrm{N}$ distance is indicative of doublebond character, as noted from the $\mathrm{C}=\mathrm{N}$ distances of 1.37 (3)1.40 (3) \AA found in $\mathrm{Cp}_{6} \mathrm{Cr}_{8} \mathrm{~S}_{8}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ (Goh et al., 2001). The hydride ligand is unsymmetrically located between two

Received 19 July 2005 Accepted 22 July 2005 Online 27 July 2005

Os atoms. Three terminal carbonyl ligands around each metal atom complete the structure. The two molecules in the asymetric unit are essentially identical.

Experimental

The title compound was synthesized according to the procedure of Arce et al. (1985). Treatment of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{OCH}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{10}\right]$ with $\mathrm{HB}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ followed by the addition of tetraethylammonium N, N-diethyldithiocarbamate gave $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left\{\mu^{3}, \eta^{2}-(\mathrm{S}, S)-\mathrm{S}_{2} \mathrm{CNEt}_{2}\right\}-\right.$ $\left.(\mathrm{CO})_{9}\right]$, which was thermolytically decarbonylated to give the title compound. Crystals were grown from a hexane solution at 253 K .

Crystal data

$\left[\mathrm{Os}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right) \mathrm{H}(\mathrm{CO})_{9}\right]$
$M_{r}=971.96$
Monoclinic, $P 2_{1} / c$
$a=15.0412$ (1) Å
$b=12.5376$ (1) \AA
$c=23.2430(2) \AA$
$\beta=103.191$ (1) ${ }^{\circ}$
$V=4267.53(6) \AA^{3}$
$Z=8$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.323, T_{\text {max }}=0.494$
31582 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.067$
$S=1.18$
7285 reflections
535 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=3.026 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 9424
\quad reflections
$\theta=3.9-70.6^{\circ}$
$\mu=35.26 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Prism, orange
$0.06 \times 0.03 \times 0.02 \mathrm{~mm}$

7285 independent reflections
7049 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=67.1^{\circ}$
$h=-17 \rightarrow 17$
$k=-14 \rightarrow 13$
$l=-26 \rightarrow 23$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.024 P)^{2} \\
&+5.3186 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.66 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-2.38 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
One of the independent molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Financial support was generously provided by the Ministerio de Ciencia y Tecnología of Spain (project No. BQU 2001/ 0216).

References

Adams, R. D., Captain, B. \& Smith, J. L. Jr (2003). J. Organomet. Chem. 683, 421-429.
Adams, R. D. \& Perrin, J. L. (2000). J. Mol. Struct. 550-551, 439-444.
Arce, A. J., Deeming, A. J., Donovan-Mtunzi, S. \& Kabir, S. E. (1985). J. Chem. Soc. Dalton Trans. pp. 2479-2482.
Azam, K. A., Hanif, K. M., Ghosh, A. C., Kabir, S. E., Karmakar, S. R., Malik, K. M. A., Parvin, S. \& Rosenberg, E. (2002). Polyhedron, 21, 885-892.

Brodie, A. M., Holden, H. D., Lewis, J. \& Taylor, M. J. (1986). J. Chem. Soc. Dalton Trans. pp. 633-639.
Bruker (2001). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Goh, L. Y., Weng, Z., Leong, W. K. \& Leung, P. H. (2001). Angew. Chem. Int. Ed. 40, 3236-3239.
Heard, P. J., Kite, K., Nielsen, J. S. \& Tocher, D. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Lewis, J., Massey, A. D., Monari, M., Jhonson, B. F. G., Braga, D. \& Grepioni, F. (1992). J. Chem. Soc. Dalton Trans. pp. 249-254.

Lu, X. L., Vittal, J. J., Tiekink, R. T. E., Tan, G. K., Kuan, S. L., Goh, L. Y. \& Hor, T. S. A. (2004). J. Organomet. Chem. 689, 1978-1990.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

